A Highly Accurate Solver for Stiff Ordinary Differential Equations

نویسندگان

  • Dan Kushnir
  • Vladimir Rokhlin
چکیده

We introduce a solver for stiff ordinary differential equations (ODEs) that is based on the deferred correction scheme for the corresponding Picard integral equation. Our solver relies on the assumption that the solution can be accurately represented by a combination of carefully selected complex exponentials. The solver’s accuracy and stability rely on the computation of highly accurate quadrature weights for the integration of the selected exponentials on equidistant nodes. We analyze our solver stability and accuracy regions, and demonstrate its fast convergence on stiff problems. The solver is combined with an adaptive step-size scheme employing interpolation formulas for the exponentially fitted solution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

We a Highly Accurate Solver for Stiff Ordinary Differential Equations

correction scheme for the corresponding Picard integral equation. Our solver relies on the assumption that the solution can be accurately represented by a combination of carefully selected complex exponentials. The solver’s accuracy and stability rely on the computation of highly accurate quadrature weights for the integration of the selected exponentials on equidistant nodes. We analyze our so...

متن کامل

On second derivative 3-stage Hermite--Birkhoff--Obrechkoff methods for stiff ODEs: A-stable up to order 10 with variable stepsize

Variable-step (VS) second derivative $k$-step $3$-stage Hermite--Birkhoff--Obrechkoff (HBO) methods of order $p=(k+3)$, denoted by HBO$(p)$ are constructed as a combination of linear $k$-step methods of order $(p-2)$ and a second derivative two-step diagonally implicit $3$-stage Hermite--Birkhoff method of order 5 (DIHB5) for solving stiff ordinary differential equations. The main reason for co...

متن کامل

A New Class of Highly Accurate Solvers for Ordinary Differential Equations

We introduce a new class of numerical schemes for the solution of the Cauchy problem for non-stiff ordinary differential equations (ODEs). Our algorithms are of the predictor-corrector type; they are obtained via the decomposition of the solutions of the ODEs into combinations of appropriately chosen exponentials, whereas the classical schemes are based on the approximation of solutions by poly...

متن کامل

Uniform Convergence of Interlaced Euler Method for Stiff Stochastic Differential Equations

In contrast to stiff deterministic systems of ordinary differential equations, in general, the implicit Euler method for stiff stochastic differential equations is not effective. This paper introduces a new numerical method for stiff differential equations which consists of interlacing large implicit Euler time steps with a sequence of small explicit Euler time steps. We emphasize that uniform ...

متن کامل

Robertson's Example for Stiff Differential Equations

Robertson's example models a representative reaction kinetics as a set of three ordinary diierential equations. After an introduction to the application in chemical engineering, a theoretical stiiness analysis is presented. Its results are connrmed by numerical experiments, and the performances of a non-stii and a stii numerical solver are contrasted. The methods used in this note showcase a po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2012